AIRS/AMSU/HSB NWP Products

Mitch Goldberg
NOAA/NESDIS

Walter Wolf, Lihang Zhou, Yanni Qu

December 6, 2000

Objectives of AIRS near-real time processing

- Provide AIRS data to NWP centers in near-realtime --- generally 3 hours from observation time
- Early demonstration of processing and utilization of high spectral resolution infrared data
- Early impact assessment on NWP models
- Backup software to process CrIS on NPP and IASI
- Science investigations

Science Investigations

- Data compression.
- Validate and improve radiative transfer calculations.
- Cloud detection and clearing.
- Use of imager to improve cloud detection
- Channel selection (super channels).
- Validate and improve retrieval algorithms.
- Forecast impact studies

Key Partners

- Key Partners –IPO, NASA, JPL, AIRS Science Team and NWP centers
- NASA provides data-stream to NOAA computer
- AIRS Science team developed the science algorithms
- JPL converted science code to operational code
- NWP centers defined product files for their data assimilation and will provide feedback.
- NESDIS provides AIRS data (retrievals and radiances) in near-real time and validation/improvements to algorithms

AIRS NWP Customers

- NCEP
- UK Meteorological Office
- ECMWF
- Meteo-France
- Goddard DAO
- Canadian Meteorological Service

Work accomplished

- Defined NWP product files
- Upgraded 8 CPU SGI Origin 2000 to 32 CPUs
- Implemented near real-time (NRT) generation of simulated AIRS/AMSU-A and HSB and NWP product files
- Developed web-site displays thinned radiance product file (228 AIRS channels) and thinned principal component (pc) scores file, pc regression retrievals of temperature, moisture and ozone.
- Radiance product file is in BUFR and is available on anonymous ftp site (last 24 hours of data)

AIRS Orbital Data Sets

- Derived from the operational NCEP global model.
- Includes temperature at 26 levels (1015 mb to 3 mb) water vapor at 21 levels ozone at 6 levels
- Water is extrapolated to top of the atmosphere.
- UARS climatology is appended to the temperature above 3 mb.
- Data is interpolated to AIRS 3 x 3 locations within AMSU fov.

AIRS Orbital Data Sets

- Includes surface topography and variable surface pressure
- Daytime and nighttime conditions
- T(p),q(p),o3(p) from surface to .005 mb.
- cloud liquid water profiles
- multiple level cloudy conditions with spectrally varying cloud emissivity and reflectivity, consistent with atmospheric conditions (clouds from global model, but cloud amounts are randomized)
- variable surface skin temperature, surface emissivity and surface reflectivity
- variable land coverage with coastlines, lakes, etc.
- variable view and solar zenith angles

NWP Product files

- Thinned Radiance files (HDF and BUFR):
- 4 types:
 - a) center of 3 x 3 from every other golf ball, 228 channels. + AMSU and HSB

- b) pc scores using same decimation as a)
- c) Every 7th golfball, all 9 fovs, 228 AIRS channels all AMSU and HSB
- d) Full resolution AMSU and HSB
- Include cloud detection information
- Full resolution level 2 products temperature, moisture and ozone.

Variables in the BUFR file

- Latitude, Longitude
- Scan and Footprint Positions
- Time (Year, Month, Day, Hour, Minute, Second)
- Satellite Azimuth & Zenith Angles
- Solar Azimuth & Zenith Angles

- Satellite Height
- Cloud Tests
- AIRS/AMSU/HSB
 Channel Numbers,
 Frequencies, and
 Brightness
 Temperatures
- TBD: Instrument Temperatures and Quality Flag

EOF Scores

Radiance File

Rad. vs. Freq.

Level2 regression retrieval

At 100 Levels

At 25 Layers

Profiles

Error Estimate

At 100 Levels

At 25 Layers

Level2 Truth

At 100 Levels

At 25 Layers

Related Info.

Background

AIRS at JPL

Other Links

Welcome to AIRS Near-RealTime Simulations Website

For more information, please contact with: Mitch Goldberg

EOF Scores

Radiance File

Rad. vs. Freq.

Level2 regression retrieval

At 100 Levels

At 25 Layers

Profiles

Error Estimate

At 100 Levels

At 25 Layers

Level2 Truth

At 100 Levels

At 25 Layers

Related Info.

Background

AIRS at JPL

Other Links

EOF Scores

Today is: December 5, 2000. Generally data 5 days prior to today are available for display.

Any comments? please contact Lihang Zhou for additional information.

Principal Components

• $R = a_1Y_1 + a_2Y_2 + a_nY_n$

n = number of principal components

a = principal component scores (scalar)

Y = principal components (eigenvectors)

• Need ancillary file of principal components (eigenvectors).

EOF Scores

Radiance File

Rad. vs. Freq.

Level2 regression retrieval

At 100 Levels

At 25 Layers

Profiles

Error Estimate

At 100 Levels

At 25 Layers

Level2 Truth

At 100 Levels

At 25 Layers

Related Info.

Background

AIRS at JPL

Other Links

AIRS Near-Real-Time Simulations

EOF Scores

Radiance File

Rad. vs. Freq.

Level2 regression retrieval

At 100 Levels

At 25 Layers

Profiles

Error Estimate

At 100 Levels

At 25 Layers

Level2 Truth

At 100 Levels

At 25 Layers

Related Info.

Background

AIRS at JPL

Other Links

AIRS Near-Real-Time Simulations

12/4/00 reconstruction scores

Future work

- Create BUFR PC Score files.
- Add level 2 retrieval code
- Improve simulations with more realistic surface emissivities.
- Add radiosonde collocation procedures
- Add all level 2 products to website.
- Add qc trend analysis information to website.
- Monitor reconstruction scores, cloud detection, retrieval errors and radiances
- Compute trends between measured and calculated.

Resources

- Add person to develop monitoring tools.
- Additional disk space and CPUs to support parallel level 2 processing and continue simulation package.
- Current CPU capability will support level 2 processing or simulations.